APPLYING METHODS OF NATURAL SCIENCES IN BUSINESS RESEARCH

Anna Svirina

EKA UNIVERSITY OF APPLIED SCIENCES

NATURAL SCIENCES: SPECIFIC FEATURES

- 3000+ years old
- Measuring instruments
- Diverse approaches
- Structure and laws
- Methodology

Examples of natural sciences based approaches

- Bioeconomics
- Econophysics

Famous approach: experiment

Full experiment: Hothorne

- Experiential setting
- Dependent variable
- Independent variables
- Control group

Quasi experiment: de Soto

- Experiential setting (not possible)
- Dependent variable
- Independent variables
- Control group (not possible)

Biology and economics

In nature, we see groups of different organisms working together to best utilize the resources needed to sustain life, while still promoting a "survival of the fittest" framework.

Like behavioral finance and other applied economic schools, bioeconomics is another example of economic theory branching out of classical boundaries and attempting to better explain the complex economies of today.

Biology-based research methods

Neural networks Virus spreading

Econophysics

- More than anything, physicists have helped to establish empirical facts about financial markets; for example, that the probability of large price movements decreases in accordance with an inverse cubic power law in many diverse markets.
- Physicists have identified instructive links between markets and other natural phenomena. For example, in the period following a large crash, markets show lingering activity which follows the famous Omori law for earthquake aftershocks.
- Physicists have also helped to develop more realistic models of markets, here mostly in collaboration with economists. In the mid-1990s, researchers first demonstrated how fat-tailed dynamics could arise naturally in models that represent a market as an ecology of interacting adaptive agents.

Physics-based methods

Quantum statistics

Measuring instruments

Engineering and business

Geometry and economics?

Econochemistry?

Periodic Table																2 Helium 4,01 1s ²		
3 Lithium 6,97 [He] 2s ¹	4 Be 9,01 [He] 2s ²		01	f	Ele	en	ne	er	nt	S			5 Boron 10,81 [He] 2s ² 2p ¹	6 Carbon 12,01 [He] 2s ² 2p ²	7 Nitrogen 14,01 [He] 2s ² 2p ³	8 Oxygen 15,99 [He] 2s ² 2p ⁴	9 Fluorine 18,99 [He] 2s ² 2p ⁵	10 Neon 20,18 [He] 2s ² 2p ⁶
11 Na Sodium 22,99 [Ne] 3s ¹	12 Mg Magnesium 24,3 [Ne] 3s ²												15 Aluminum 26,98 (Ne] 3s ² 3p ¹	14 Silicon 28,08 [Ne] 3s ² 3p ²	15 Phosphorus 30.97 [Ne] 3s ² 3p ³	16 S Sulfur 32,07 [Ne] 3s ² 3p ⁴	17 Cl Chiorine 35,45 (Ne) 3s ² 3p ⁵	18 Argon 39,95 [Ne] 3s ² 3p ⁶
19 K Potassium 39,1 [Ar] 4s ¹	20 Ca Calcium 40,08 [Ar] 4s ²		21 SC Scandium 44,96 [Ar] 4s ² 3d ¹	22 Titanium 47,87 [Ar] 4s ² 3d ²	23 V Vanadium 50,94 [Ar] 4s ² 3d ³	24 Cr 51,99 [Ar] 4s ¹ 3d ⁵	25 Manganese 54,94 [Ar] 4s ² 3d ⁵	26 Fe Iron 55,845 [Ar] 45 ² 3d ⁶	58,93 [Ar] 4s ² 3d ⁷	28 Mi Nickel 58,69 [Ar] 4s ² 3d ⁸	29 Copper 63,55 [Ar] 4s ¹ 3d ¹⁰	50 Zinc 65,38 [Ar] 4s ² 3d ¹⁰	31 Gallium 69,72 [Ar] 4s ² 3d ¹⁰ 4p ¹	32 Germanium 72,63 [Ar] 4s ² 3d ¹⁰ 4p ²	33 Ass Arsenic 74,92 [Ar] 4s ² 3d ¹⁰ 4p ⁵	54 Selenium 78.98 [Ar] 4s ² 3d ¹⁰ 4p ⁴	55 Bromine 79,9 [Ar] 4s ² 3d ¹⁰ 4p ⁵	36 Krypton 83,8 [Ar] 4s ² 3d ¹⁰ 4p ⁶
37 Rb Rubidium 85,47 [Kr] 5s ²	38 Sr 87,62 [Kr] 5s ²		39 Y Yttrium 88,91 [Kr] 5s ² 4d ¹	40 Zr 2irconium 91,22 [Kr] 5s ² 4d ²	41 Nb Niobium 92,91 [Kr] 5s ¹ 4d ⁴	42 Mo 95,95 [Kr] 5s ¹ 4d ⁸	43 TC 98 [Kr] 5s ² 4d ⁵	Ru Ruthenium 101,07 [Kr] 5s ¹ 4d ⁷	45 Rhodium 102,91 [Kr] 5s ¹ 4d ⁸	46 Palladium 106,42 [Kr] (5s ⁰).4d ¹⁰	47 Silver 107,87 [Kr] 5s ¹ 4d ¹⁰	48 Cadmium 112,41 [Kr] 5s ² 4d ¹⁰	49 Indium 114,81 [Kr] 5s ² 4d ¹⁰ 5p ¹	50 Sin 118,71 [Kr] 5s ² 4d ¹⁰ 5p ²	51 Sb Antimony 121,76 [Kr] 5s ² 4d ¹⁰ 5p ³	52 Telurium 127.6 [Kr] 5s ² 4d ¹⁰ 5p ⁴	55 Fodine 126,9 [Kr] 5s ² 4d ¹⁰ 5p ⁵	54 Xenon 131,29 [Kr] 5s ² 4d ¹⁰ 5p ⁶
55 CS Cesium 132,91 [Xe] 6s ¹	56 Ba Barium 137,33 [Xe] 6s ²	57—71 La Lanthanides	Lu	72 Hafnium 178,49 [Xe] 6s ² 4f ¹⁴ 5d ²	73 T 180,95 [Xe] 6s ² 4f ¹⁴ 5d ⁵	Tungsten 183,84 [Xe] 6s ² 4f ¹⁴ 5d ⁴	75 Re Rhenium 186,2 [Xe] 6s ² 4f ¹⁴ 5d ⁵	76 Osmium 190,23 [Xe] 65 ² 4f ¹⁴ 5d ⁶	77 Iridium 192,22 [Xe] 6s ² 4f ¹⁴ 5d ⁷	78 Pit Platinum 195,08 [Xe] 6s ² 4f ¹⁴ 5d ⁸	79 Gold 196,97 [Xe] 6s ² 4f ¹⁴ 5d ⁹	80 Hg Mercury 200,59 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰	81 Thallium 204,38 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹	82 Lead 207,2 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	83 Bismuth 208,98 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	84 Polonium 209 [Xe] 5s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	85 Att Astatine 210 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵	86 Rn Radon 222 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶

If a scientific method is proven to be true, it should work in any field of science

Colleagues had proven the research methods to be reliable, try those when you are lost Questions and remarks?

Experiments always work, but we can use quasi experiments